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Non-intrusive measurements of the streamwise velocity in turbulent round jets in
air are performed by recording short-time displacements and distorsions of very
thin tagging lines written spanwise into the flow. The lines are written by Raman-
exciting oxygen molecules and are interrogated by laser-induced electronic fluorescence
(relief). This gives access to the spatial structure of transverse velocity increments
without recourse to the Taylor hypothesis. The resolution is around 25 µm, less than
twice the Kolmogorov scale η for the experiments performed (with Rλ ≈ 360–600).

The technique is validated by comparison with results obtained from other tech-
niques for longitudinal or transverse structure functions up to order 8. The agreement
is consistent with the estimated errors – a few percent on exponents determined
by extended-self-similarity – and indicates significant departures from Kolmogorov
(1941) scaling.

Probability distribution functions of transverse velocity increments ∆u over separa-
tions down to 1.8η are reported for the first time. Violent events, with ∆u comparable
to the r.m.s. turbulent velocity fluctuation, are found to take place with statistically
significant probabilities. The shapes of the corresponding lines suggest the effect of
intense slender vortex filaments.

1. Introduction
Incompressible flow allows tangential but not normal discontinuities of the veloc-

ity. Hence, it is of considerable interest to investigate transverse velocity increments
over very small distances. By transverse we mean velocity components perpendicular
to the line separating the two points, e.g. spanwise v-components with streamwise
x-separation or streamwise u-components with spanwise y-separation. How small a
separation ? In principle, one would like to explore separations down to the Kol-
mogorov dissipation scale η or even smaller. In practice, techniques used so far, which
have used several probes or multi-wire probes, were restricted to separations much
larger than η at high Reynolds numbers (Herweijer & Van der Water 1995; Van
der Water & Herweijer 1996; Saddoughi & Veeravalli 1994) or of a few η in thick
boundary layers at moderate Reynolds numbers (Vukoslavčević, Wallace & Balint
1991; Antonia 1993 and references therein).

We shall here present results obtained by Raman-excited laser-induced electronic
fluorescence (relief), a non-intrusive optical technique, which is applicable only to
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transverse velocity increments. The results are given for separations down to about
25 µm. This is between 1.5η and 2η for the round jet used in our experiments. The
relief technique is presented in §2 and the experimental setup in §3. Data acquisition
and processing techniques which give the spanwise variation of the streamwise velocity
are described in §4. We then turn to results. Measurements of the single-point velocity
distribution are presented in §5. Transverse structure functions of order two and higher
are discussed in §6; this includes results which are basically validations of the relief

technique. Probability distribution functions (p.d.f.) of transverse velocity increments
are presented in §7; this leads to the identification of strong events responsible for
the tails of the p.d.f. at separations comparable to η. In the concluding §8 we discuss
the nature of these events and make some remarks about future developments of the
technique.

2. RELIEF: a non-intrusive technique
The relief flow tagging technique is a powerful new method for non-intrusive

velocity measurements in air flow (Miles, Lempert & Zhang 1991; Miles et al. 1993).
Like its companion method phantomm (photo-activated non-intrusive tracking of
molecular motion), designed for use in water (Lempert et al. 1995; Harris et al. 1996),
relief is based on the direct tagging and tracking of an ensemble of molecules in
a fluid. In the case of relief, no seeding at all is necessary, as oxygen molecules
themselves are tagged by changing their vibrational state and observing the advected
molecules by electronic fluorescence. Arbitrary linear patterns of tagged molecules
can be written in the flow using laser beams, the most straightforward being a single
line. Then, at sufficiently short time intervals, the displacement of the line orthogonal
to its direction is a measure of the corresponding velocity component at that point on
the line. relief and phantomm thus directly measure flow velocities without recourse
to an auxiliary effect, such as a cooling rate mechanism (e.g. with hot-wire probes) or
the advection of large particles (e.g. in particle imaging velocimetry). The resolution of
these methods is only limited by the time resolution between tagging and interrogation
and by the spatial resolution of the optical system. Also, both relief and phantomm

are intrinsically spatial methods, that can measure simultaneously the velocity of a
large set of points in the fluid, typically along a line or grid.

The relief technique is based on the vibrational excitation of oxygen molecules by
stimulated Raman scattering followed by their observation by laser-induced electronic
fluorescence from the Schumann–Runge band. The excitation is created by a two-
photon process (at 532 and 581 nm), driving the oxygen molecules to their first
vibrational level. The two-colour tagging beam is obtained from a frequency-doubled
high-power (300 mJ/pulse) Q-switched Nd:YAG laser followed by a Raman cell
frequency shifter that generates the 581 nm orange colour (Zhang, Lempert & Miles
1993). The duration of the tagging process is set by the laser pulse duration of 10 ns,
and is thus virtually instantaneous with respect to the flow. The tagged molecules
remain in their excited state for a relatively long period (of the order of 1 ms in dry
air). After the tagging, the line moves with the flow for a well-defined time interval
set by a precision delay generator. The tagged flow is then interrogated using a
thick sheet of UV-light at 193 nm produced by an argon fluoride laser. This second
pulse is also of high power (40 mJ/pulse) and of very short duration (15 ns), so
that the interrogation process is also instantaneous for the flow. This ultraviolet light
further excites the oxygen molecules to the Schumann–Runge band, from which they
fluoresce, emitting near ultraviolet (200–400 nm) light. This fluorescence is imaged by
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Figure 1. Block diagram showing the relief system.

a high-sensitivity UV camera connected to a frame grabber or a video tape recorder.
With the laser system used in the current experiment the lines were written and
interrogated at a 5 Hz repetition rate. A block diagram of the whole relief setup is
shown in figure 1.

The time between tagging and interrogation has to be short compared to all relevant
hydrodynamical times, so that there is no ambiguity in the velocity measurement.
Short times are also important to minimize the effects of other velocity components,
particularly the component along the line which otherwise may lead to an uncertainty
in the exact location of the velocity element being measured. Out-of-plane motion
leads to defocusing, and is not a factor with the light-collection system used for the
experiment. (A second camera could be used to simultaneously image this component).
Balanced against the need for a short time interval is the increased accuracy associated
with a large displacement relative to the minimum resolvable displacement. In the
experiments reported here, time intervals of 5µs and 7 µs were used and found to
yield virtually identical statistical properties, indicating that the time interval was not
a factor. These time intervals led to displacements of a few hundred µm, allowing
approximately 1 % accuracy in the absolute velocity measurement, as described in
§4.

Figure 2 shows a typical example of a tagged and displaced line. The tagged lines
are of the order of 100 µm wide (full width at half-maximum) and 1 cm long. Writing
thinner lines would be interesting to increase the accuracy in the line centre determi-
nation, but is difficult to achieve with the current optical setup as we are already close
to the diffraction limit. Also, increasing the length of the line would be necessary to
measure velocities over scales close to or larger than the integral scale of the turbulent
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Figure 2. Composite image of an original tagged line and the displaced line after 7 µs in a
turbulent free jet.

flow which, in our experimental setup, is typically of a few centimetres. Diffraction
determines the length of the tagging line, which is quadratically proportional to the
beam waist at the focus and inversely proportional to the wavelength. We thus can-
not increase the length of the line or decrease its width arbitrarily; moreover, this
would affect the energy density along the line and thus its brightness and the image
signal-to-noise ratio. Also, the imaging camera used has a finite resolution in pixels
(512 pixels in the present case), giving a limit on the ratio of scales available in our
measurements. So, it is necessary with relief to decide beforehand whether to inves-
tigate small scales, e.g. less than the Kolmogorov scale, using a large magnification
on the camera, or to investigate large scales with a small magnification. We chose
an intermediate strategy, simultaneously imaging part of the inertial-range and the
dissipation-range scales, expecting to learn more by concentrating on such scales. A
multi-camera system with different magnifications would certainly be feasible, but
has not been implemented yet. Further developments planned will be discussed in the
final section.

3. Experimental setup and main characteristics
To demonstrate the capabilities of the relief technique, we have chosen to study a

well-documented turbulent flow, namely a circular axisymmetric free air jet.
A circular nozzle of diameter D = 10 mm or D = 6 mm was fitted to our high-speed

air flow system to obtain an axisymmetric air jet exiting freely in the laboratory. The
stagnation chamber was operated at up to 70 k Pa (10 p.s.i.) higher than atmospheric
pressure, leading to a pressure ratio of 1.7 between the plenum and the output. The
air temperature in the plenum was about 270 K, lower than the room temperature
by about 20 K, due to expansion cooling. The jet velocity at the nozzle exit was
set between 270 and 200 m s−1 for the different experiments. This velocity is rather
high, but was necessary to obtain large Reynolds numbers (typically 5 × 105 based
on the jet diameter) with such a small facility; thus compressibility effects cannot
be ignored at the nozzle where the Mach number is ≈ 0.8. Our measurements were
performed 38 or 40 diameters downstream, so that the turbulence is fully developed
(Hinze 1959). At these distances, the mean velocity has dropped to between 51 and
31 m s−1, that is to Mach numbers between 0.15 and 0.1, so that compressibility
effects can be safely neglected. The turbulence intensity measured by the ratio of
the r.m.s. velocity fluctuations to the mean velocity was always found to be ≈ 25 %,
which is typical of free jets. We have chosen to report here only on six different
experiments, corresponding to the longest durations and best line qualities. The main
characteristics of these experiments are given in table 1. Note that experiments A
and B were done on the same day with very close conditions, except for a different
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Nozzle Tag Number Line

φ pos Delay of length U urms λ η Rλ
Units (mm) (φ) (µs) lines (pixels) (m s−1) (m s−1) (µm) (µm)

Run A 10 38 5 5617 344 48.5 12.1 686 14.4 589
Run B 10 38 7 5249 344 42.7 11.9 720 14.9 605
Run C 10 38 5 5578 344 41.6 12.7 594 13.1 534
Run D 6 40.5 7 8070 340 48.9 12.3 653 13.9 568
Run E 6 40.5 7 7885 310 51.3 12.5 622 13.5 550
Run F 6 40.5 7 10741 382 31.2 8.8 585 15.6 365

Table 1. Characteristics of the experiments.

delay between tagging and interrogation, to check that this factor was not affecting
the measured quantities.

Let us now define the geometry of the experiment. We will denote by x the
streamwise direction along the jet axis and by u the corresponding velocity component.
We will use y as the spanwise coordinate along the relief line which is orthogonal
to the jet axis. As we are observing the displacements transverse to that line, it means
that we are measuring the streamwise velocity as a function of the spanwise position,
that is u(y). The current relief configuration does not allow the measurement of
any other velocity component. The spanwise component v(y) of the velocity leads to
displacements of the line parallel to itself and thus cannot be observed. Furthermore,
during the time interval ∆t between tagging and interrogation, it shifts the point of
measurement from y to y′ = y+ v(y)∆t. The shift may be safely ignored except when
studying violent events of the sort discussed in §8. The w-component causes out-of-
plane motion and leads to defocusing of the line. This is not a real problem here, as
the UV sheet has a thickness of a few hundred µm, much larger than the tagging line
width and the camera lens has a field depth large enough to avoid excessive blurring
of the line profile. Moreover, the line centre position is not affected by defocusing.
It would of course be very interesting to measure the velocity u component along
the streamwise direction x, that is u(x), to obtain simultaneously longitudinal and
transverse quantities. With relief, this would require a large number of parallel lines
written simultaneously along the flow direction. Such a system is currently under
study, using a set of mirrors to create a multipass configuration, the tagging beam
being sent back and forth through the jet a large number of times. Another possibility
would be to interrogate the same line many times by simply firing the UV laser more
than once. This is rather hard to achieve as high-power megaHertz UV lasers in
that frequency band do not exist yet, and the interrogation step also causes oxygen
dissociation, significantly depleting the population of excited molecules. Furthermore,
a single relief line cannot be used for a very long time as it will begin to stretch and
fold after a short time.

Also shown in table 1 are the measured turbulence parameters for the six exper-
iments, namely the longitudinal Taylor microscale λ, the Kolmogorov scale η and
the Taylor-scale Reynolds number Rλ. These were all estimated from the mean-

square transverse velocity gradients
〈(
∂yu
)2
〉

computed from the transverse velocity

structure function as described in §6.1. Observe that the high resolution permitted
by relief allows an accurate measurement of y-derivatives. For an incompressible
flow, assumed to be isotropic at small scales and smoothed by viscosity, we have
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〈
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2
〉
. Hence,

λ =

 2u2
rms〈(

∂yu
)2
〉
1/2

(3.1)

and

Rλ =
λurms

ν
(3.2)

as usual. Note that we used the standard definition of the transverse Taylor mi-
croscale λg which is also used in hot-wire experimentation, even though longitudinal
measurements are then mostly made and isotropy is assumed to compute λg . The
Kolmogorov scale η is obtained from the mean dissipation assuming isotropy and
using (6.7). It can be seen from table 1 that Rλ stays in the range 360 to 600 in our
experiments. This is not very high but dictated by the small size of our experimental
facility. The Kolmogorov scale η only changes from 14 to 16µm, having, as usual, a
weak dependence on the Reynolds number.

4. The processing of RELIEF data

As described in §2, the advected relief lines are imaged with a high-speed CID
camera fitted with a dual microchannel plate UV image intensifier and a 2:1 fibre-optic
minifier. As we are not able, for now, to do real-time (5 or 10 frames/s) processing of
the relief images, they are written to video tapes for later processing. This processing
first involves frame digitizing with an 8-bit frame grabber attached to a workstation.
From the digitized pictures, we wish to automatically extract the line displacement,
that is the line centre position as a function of the coordinate along the line. We
observe that the tagging linewidth at half-maximum ≈ 100 µm can be resolved with
the relief pixel resolution 24–28 µm, depending on the experiment. An easy way to
obtain the line centre position would be, for each y-position along the line, to find the
x-coordinate of the pixel of maximum brightness. This gives, however, an accuracy
of only 15 % to 20 % on the velocity, which is insufficient. An improved procedure
has been developed, which gives subpixel resolution and thus much more accurate
velocities. It is based on the specific brightness profile of the line.

Our laser beams have a Gaussian intensity distribution since they are operated in
their fundamental mode, so the projection of the beam also has a Gaussian profile.
Thermal and turbulent diffusion in air lead to a very slow broadening of the line
as the delay between tagging and interrogation increases (typically 5 % in 7µs).
We observe that the profile remains Gaussian for these short times. The line centre
position can thus be found with subpixel accuracy by fitting a Gaussian curve to
the intensity profile at each y-position along the line. Specifically, we developed a
nonlinear least-square fitting routine to find the four parameters (Xy ≡ line centre
position, Wy ≡ width, Cy ≡ contrast, By ≡ background intensity) describing the
intensity profile as

I(x, y) = Cy exp

(
−(x−Xy)

2

2W 2
y

)
+ By . (4.1)

This seems to require considerable computation, but the calculations can be very
much streamlined by using a recursive evaluation of the Gaussian curve and noting
that the curve parameters do not change much between adjacent pixels. So, the
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Figure 3. Typical velocity profile obtained by relief.

fitted values for one position can be used as starting values for the next y. In this
way, an optimized procedure can find all displacements Xy on a 350 pixels line in
about 1.5 s with a typical accuracy of 0.1–0.2 pixels, that is 3–6 µm, leading to ≈ 1 %
accuracy on the velocity. Note that this method also gives the line width Wy , which
could be used to measure turbulent diffusion by increasing the delay between tagging
and interrogation. For a few frames, a bright spot close to the relief line (due, for
example, to a dust particle) can foul the fitting routine in including the spot as part
of the line. Such events can be recognized rather easily as the spot causes a large
one-sided jump in the profile of the line centre position; so they are discarded before
any further processing, as they would contaminate the evaluation of the velocity and,
even more, of the velocity increments. The discarded lines represent a very small
fraction (less than 1 %) of all data sets.

From the line centre position, we obtain immediately the velocity

U(y) =
Xy −X0

y

∆t
. (4.2)

Here, ∆t is the time delay and X0
y is the position of the non-displaced baseline

obtained by taking a few pictures with no delay between tagging and interrogation. A
typical example of a velocity profile obtained by this procedure is shown in figure 3.
Other examples, displaying low-probability violent events, are shown in figure 15.

From the flow velocity U(y), it is then necessary to obtain the turbulent velocity
fluctuations u(y) by removing a ‘mean’ velocity. This mean velocity is a function of
the spanwise coordinate y. Indeed, even close to the jet axis, the velocity profile shows
measurable deviations from a flat profile. Also, slow drifts in the pressure-control
system lead to temporal variations in the jet mean velocity, which are small but
cannot be neglected in comparison with the turbulent velocity r.m.s. fluctuations urms.
So, we had to define a time- and position-dependent mean velocity U(y) obtained
by a moving-average procedure with a period of 60 s centred on the line considered.
(A similar difficulty arises when estimating slowly drifting average velocities sampled
by a hot wire). With this method, the fluctuating field u(y) = U(y) − U(y) remains
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homogeneous, at least to second order, its zero mean value and its r.m.s. intensity
being found to vary by less than 3 % over the whole line, this being true for all data
sets. This subtraction procedure also eliminates small geometric distortions of the
undisplaced line due to the optics.

Statistical quantities are obtained from the velocity field u(y) by a combination
of time and space averaging. Since the laser’s tagging frequency 5 Hz is quite low,
the fields of successive lines are completely uncorrelated and time averaging reduces
the variance of measurements by a factor corresponding to the number of lines Nt.
Note that the relief resolution is a very small fraction of the turbulence integral
scale, so that the velocities of adjacent points are correlated (as they are in temporal
measurements using a hot wire). Hence, the reduction in variance is much less than
the number of points along the line Ny . From the discretized field um ≡ u(mρy),
ρy being the resolution along the y-coordinate, we obtain the velocity moments as

〈|u|p〉 =
1

NtNy

∑
lines

Ny−1∑
m=0

|um|p . (4.3)

Similarly, structure functions (defined in §6 as moments of velocity increments over a
distance jρy), are determined as

S⊥p (jρy) =
1

Nt(Ny − j)
∑
lines

Ny−j−1∑
m=0

|um+j − um|p . (4.4)

We also estimated probability density functions (p.d.f.s) of the velocity and of
velocity increments, the latter for a set of exponentially spaced separations j =
1, 2, 4, . . . . The p.d.f.s were calculated by a histogram binning procedure: the inter-
val [−αurms, αurms] is typically divided into ≈ 200–250 cells of constant width† and
each value of the velocity um or of the velocity difference um+j − um increments the
corresponding histogram bin by one. In practice, we used α ≈ 6, this value being large
enough for all velocity and velocity increments to fall inside the histogram bounds.
Two comments are in order here. First, even though we expected the p.d.f.s of the
velocity and of the transverse velocity increments to be symmetrical, we systemati-
cally computed both negative and positive parts of the distribution, to check for any
possible mistake in the determination of the mean velocity U(y) and also to check
the accuracy in the far tails of the p.d.f.s by comparing positive and negative tails.
Also, we chose to compute velocity moments and structure functions not from the
p.d.f.s but directly from the velocity values. Indeed, the former method involves a
truncation-type error, all velocity values falling in the same bin being collapsed onto
the bin centre value. Note that the bin width cannot be taken too small if one wishes
to reduce statistical noise on the p.d.f.s.

5. The single-point velocity distribution
One of the first things we were interested in was the velocity distribution p(u),

that is the single-point probability density of streamwise velocity fluctuations u(y).
This was estimated by the histogram binning procedure of §4 and the resulting
probability densities are shown in figure 4 together with a Gaussian with r.m.s. value

† Cells with widths forming an exponential progression would provide better statistical perfor-
mance with near exponential p.d.f.s of the type often found in turbulence, but they were not used
here because their programming is much more involved.
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urms = 〈u2〉1/2. The velocity distribution is symmetrical and close to Gaussian, but not
exactly so. The tails are systematically below the Gaussian value at large deviations.
To check this effect, we computed the reduced moments

µp =
〈|u|p〉
γpu

p
rms

, (5.1)

where

γp =

(
2

π

)1/2 ∫ ∞
0

dξ ξp exp

(
−ξ

2

2

)
=

2p/2

π1/2
Γ

(
p+ 1

2

)
(5.2)

is the moment of order p of the absolute value of a Gaussian variable with unit
variance. Results are shown in figure 5 and indicate that measured moments are
always smaller than those calculated for a Gaussian distribution. The same effect was
observed in numerical simulations by Jiménez et al. (1993 and references therein; see
e.g. table 2) and no theoretical explanation for this fact has been found yet. The effect
is much larger than the sampling error. Indeed, inspection of figure 4 shows that the
probability density is correctly estimated up to ±4urms and thus that moments up to
order ≈ 8 should be estimated accurately.

6. Transverse structure functions
The standard definitions of longitudinal and transverse structure functions of

order p are

S‖p (r) = 〈(u′(x+ r)− u′(x))p〉 , (6.1)

and

S⊥p (r) =
〈(
u(y + r)− u(y)

)p〉
, (6.2)
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respectively. In (6.1), u′(x) is the longitudinal velocity fluctuation, considered now as
a function of the streamwise coordinate.

For isotropic three-dimensional incompressible turbulence, the second-order lon-
gitudinal and transverse structure functions are related by (Monin & Yaglom 1975,
Section 14.2)

S⊥2 (r) = S
‖
2 (r) +

r

2

∂S
‖
2 (r)

∂r
. (6.3)

Furthermore, all odd-order transverse structure functions vanish. This is indeed the
case for our data, within the accuracy of measurements.† Hence, we find it convenient
to redefine the transverse structure function with an absolute value :

S⊥p (r) =
〈∣∣u(y + r)− u(y)

∣∣p〉 . (6.4)

We also use reduced transverse structure functions

S̃⊥p (r) =
S⊥p (r)

γp2p/2u
p
rms

, (6.5)

where γp is given by (5.2). The normalization is chosen in such a way that if, at very
large separations r, velocity fluctuations become uncorrelated with a Gaussian p.d.f.,
then S̃⊥p (r) goes to unity. This normalization differs from the more traditional one,

in which the structure function of order p is divided by vpη , where vη = (νε)1/4 is the
‘Kolmogorov velocity’. Note that urms can be determined with better accuracy than ε
or η. Furthermore, our reduced structure functions stay finite in the limit of vanishing
viscosity, where both η and vη tend to zero.

For large enough Reynolds numbers and at scales lying in the inertial range, that is
much larger than the Kolmogorov scale η and much smaller than the integral scale `0,

† Odd-order transverse structure functions reduced as in (6.5) are found to be less than 10−3 in
absolute value.
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structure functions are found to behave approximately as power laws

S‖p (r) ∝ rζ
‖
p , S⊥p (r) ∝ rζ

⊥
p . (6.6)

The scaling exponents ζp are the subject of much interest, as their deviation from
a linear relation ζp ∝ p would imply intermittency effects in turbulence. Also, most
recent experimental works show deviations from the Kolmogorov (1941) prediction

ζ
‖
p = p/3. Note that there is no theoretical prediction for any transverse scaling

exponent ζ⊥p except for relation (6.3).

6.1. The second-order structure function and the Kolmogorov constant

Figure 6 shows the second-order structure function S̃⊥2 vs. r/η for various values
of Rλ. We can clearly identify a power-law inertial range at large separations and a
dissipation range at scales less than about 30η. The small scales are resolved down to
about 1.5η, that is, 24 µm. The dissipation scale η and the (mean) energy dissipation ε
are here determined from the experimental data by the following formulas (the second
of which makes use of isotropy):〈(

∂yu
)2
〉

= lim
r→0

S⊥2 (r)

r2
, ε = 15

2
ν
〈(
∂yu
)2
〉
, η =

(
ν3

ε

)1/4

. (6.7)

More quantitative information is obtained by measuring the ‘local scaling exponent’,
i.e. the logarithmic derivative of the structure function, calculated here using least-
square fits on octave ratios. This is shown in figure 7 for the second-order transverse
structure function. It is seen that, beyond ∼ 30η and up to the largest separation
available with the optical constraint mentioned in §2, the exponent becomes approx-
imately constant. The value is around ζ⊥2 ≈ 0.7, higher than the Kolmogorov (1941)
value 2/3, but consistent with values reported by many experimentalists using either
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longitudinal or transverse second-order structure functions (Anselmet et al. 1984;

Benzi et al. 1995). (Note that, by (6.3), ζ⊥2 = ζ
‖
2 .) At small scales the local scaling

exponent rises quickly and reaches a value about 10% short of 2, the value predicted
by assuming that viscosity makes the flow smooth.

The term ‘Kolmogorov constant’ should in principle be used exclusively to denote
the constant C2 introduced by Kolmogorov (1941) himself in connection with his
two-thirds law for the second-order structure function at inertial-range separations :

S⊥2 (r) = 4
3
C2 ε

2/3 r2/3 (6.8)

The 4/3 factor comes from (6.3), since C2 (denoted C by Kolmogorov) is defined
for the longitudinal structure function. It is unfortunate that the term ‘Kolmogorov
constant’ is used more frequently to denote the constant CK in the k−5/3 law for
the longitudinal energy spectrum, which is actually 4.02 times smaller, and has never
been used by Kolmogorov. Sreenivasan (1995) gives a compilation of values of CK
from a variety of experiments with Rλ ranging from about 50 to more than 104. He
reports values CK = 0.5 ± 0.1, corresponding to C2 = 2.0 ± 0.4. He also mentions
that shear-flow turbulence usually does not display a Kolmogorov-type inertial range
in the transverse spectrum until Rλ reaches values ‘perhaps as high as 1000’. Our
experiments suggest that Rλ values of 500 may be enough.

We measured C2 by assuming that the second-order structure function follows
exactly Kolmogorov’s two-thirds law (6.8) (which produces an uncertainty of about
10%), that is by looking for a plateau in the ‘compensated structure function’
r−2/3 S⊥2 (r). For the six experiments A–F, we found C2 = 2.1± 0.5, which is consistent
with Sreenivasan’s (1995) data.

The fairly large scatter of data on C2 is probably due to the fact that, because of
the line-length limitation discussed in §2, the plateaus in the compensated structure
functions are not very well defined, particularly at the smaller Rλ. We have also looked
for other sources of errors, such as an effect of compressibility or an insufficiently
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Figure 8. Log–log plot of the third-order structure functions.

well-resolved dissipation scale. It is known that, for subsonic flow, the corrections due
to finite Mach numbers M scale as M2. The Mach numbers based on the jet exit
velocity are close to unity; those based on the mean velocity 30 diameters downstream
are 0.15 or less and those based on urms are 0.04 or less. The latter seems the most
relevant one and leads to very small compressibility corrections. Let us assume that
there is an admixture of incompressible turbulence with a k−5/3 spectrum and a small
amount of acoustic turbulence with a k−nac spectrum. We then find that (i) when
nac > 5/3, e.g. with a k−2 spectrum, the incompressible part of S⊥2 (r) is overestimated
at inertial-range separation, while the dissipation rate ε is essentially unaffected, (ii)
when nac < 5/3, it is the other way round. Hence, in the former case our measurements
overestimate C2 while in the latter they underestimate it. As for a poorly resolved
dissipation scale, the effect should be to decrease C2 if we assume that the graph of
S⊥2 (r) in log–log coordinates keeps a negative curvature at the non-resolved scales.

6.2. Higher-order structure functions

What we have reported up to this point may be viewed as a ‘standard’ validation of
the relief technique for turbulence, that is with emphasis on second-order quantities
expressible in terms of the energy spectrum. We now turn to higher-order structure
functions.

Figures 8 and 9 show the transverse structure function of order 3 for all six
experiments and those of order 4, 5 and 6 for experiment F, respectively. It is seen
that the structure function of order p has an rζ

⊥
p range at separations larger than 30η.

Direct measurements of the exponents ζ⊥p deteriorate rapidly when increasing the
order p. This is because high-order moments of velocity increments are influenced by
rare events in the tail of the corresponding p.d.f. (see e.g. Anselmet et al. 1984). It has
been observed by Benzi et al. (1995) that better scaling is obtained by the extended-
self-similarity (ESS) method in which the structure function of order p is plotted
against the structure function of a given order p0, rather than against the separation.
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Figure 9. Transverse structure functions of order 4, 5 and 6 for run F.
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Figure 10. Second-order vs. third-order transverse structure functions (ESS method).

The choice p0 = 3 is usually made, since it is known that the third-order longitudinal

structure function has the exponent ζ
‖
3 = 1 (see e.g. Landau & Lifschitz 1987, §34;

Frisch 1995, §6.2). There is no such constraint on the third-order transverse structure
function (with an absolute value). Still, direct measurement yields here ζ⊥3 ≈ 1 (in
fact, closer to 1.02) with an accuracy better than 3 %, so that we can conveniently
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use p0 = 3. Specifically, we look for an ESS scaling relation of the form

S⊥p (r) ∝
(
S⊥3 (r)

)ξ⊥p , (6.9)

thereby leaving open the possibility that ζ⊥p and ξ⊥p are not exactly equal. Figures 10

and 11 show, respectively, S̃⊥2 vs. S̃⊥3 and the local scaling exponent ξ⊥2 , defined as
the logarithmic derivative of S̃⊥2 with respect to S̃⊥3 . The large variance reduction
brought by ESS can be appreciated by comparing these figures with figures 6 and
7. Figure 12 shows ESS plots of the transverse structure functions of order 4, 5 and
6 against the third one, for the six experiments performed. Finally, table 2 gives the
exponents ξ⊥p measured by ESS for p from 2 to 8 for the six experiments performed
by least-square fits over the inertial range 20η–600η; the errors, also obtained from
the least-square fits, are seen to grow, in relative value, from 1.5 % at p = 2 to 15 %
at p = 8. This increase of the exponent fluctuations with the moment order p can also
be observed in the local scaling exponent plots, which are not shown here because
they are quite similar to figure 11 but with larger-amplitude fluctuations, reflecting
the slower statistical convergence of these higher-order moments. We have enough
data points to be able to determine ξ⊥p for p up to 6 and, possibly, up to 8. These
values being obtained by ESS, we changed the notation ζp to ξp. The values are

clearly not all compatible with the Kolmogorov (1941) prediction ξ
‖
p = p/3. They are

however consistent with the ESS values for ξ
‖
p reported by Benzi et al. (1995) and

also with those for ξ⊥p reported by Van der Water & Herweijer (1996) or Kahalerras,
Malecot & Gagne (1996) for p 6 8. For higher values of p, these authors disagree on

the equality of ξ
‖
p and ξ⊥p , but a very large number of data points is necessary to get

reliable estimates of moments of such high order. Note that ξ⊥p and ξ
‖
p need not be

equal when p 6= 2.
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Figure 12. ESS plots of the transverse structure functions of order 4, 5 and 6 against the third one.

p = 2 p = 4 p = 5 p = 6 p = 7 p = 8

0.70± 0.01 1.28± 0.03 1.50± 0.05 1.75± 0.1 2.0± 0.2 2.2± 0.3

Table 2. Exponents ξ⊥p of transverse structure functions for p from 2 to 8, measured by ESS.

7. PDFs of transverse velocity increments and violent events
From now on we use the following notation for transverse velocity increments:

∆u(r; y) ≡ u(y + r)− u(y). (7.1)

The argument y will be omitted when considering statistical quantities which, by
homogeneity, do not depend on y. The p.d.f. of ∆u(r; y) is denoted p(∆u; r). PDFs
are calculated as histograms using the binning method described in §4. Figure 13
shows p(∆u; r) for three values of r/η for run F with Rλ = 365.† A Gaussian with
unit variance is shown for comparison. Figure 14 shows the same results as in
figure 13, but reduced using an absolute velocity scale urms. Again, a Gaussian with
standard deviation

√
2urms, the r.m.s. value of ∆u at very larges separations, is shown

for comparison. Let us now comment on the results. The total number of points
analysed is about 3× 106 (350 per line and 5 000 to 11 000 lines). This explains why
the histograms become noisy when the cumulative probability (from −∞ for the
negative wing and to +∞ for the positive wing) drops to about 10−4–10−5. (Since
the wings decrease very rapidly, the cumulative probability is of the same order
of magnitude as the p.d.f.) Note that, in contrast to the longitudinal p.d.f., which
is negatively skewed (as required by Kolmogorov’s four-fifths law) the transverse

† The results being essentially identical for all the runs, we have presented only run F, to avoid
cluttering the figure with data points.
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p.d.f. is symmetrical, except for the statistical noise. It is seen that the shape of the
wings of the p.d.f. is roughly Gaussian at 460η, then roughly exponential at 43η,
and finally subexponential. Qualitatively, the measured wings can be approximated
by stretched exponentials p(∆u; r) ∝ exp(−α|∆u|β). This feature has been observed
frequently for longitudinal increments (Vincent & Meneguzzi 1991) and also for
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Figure 15. Examples of lines showing violent events. Only the neighbourhood of the violent event
is shown (about 5 % of the total line length). The y- and u-origins have been shifted to the centre
of the event and u has been reversed, whenever needed, to make the maximum velocity increment
positive.

transverse increments (Kahalerras et al. 1996; Van de Water & Herweijer 1996). A
simple mechanism leading to p.d.f.s with stretched exponential tails by multiplication
of independent random variables has been proposed by Frisch & Sornette (1996). We
must, however, stress that stretched exponential behaviour with β < 2 cannot hold
for arbitrarily large arguments ∆u if the single-point p.d.f. falls off as a Gaussian or
faster, as suggested by figure 4. Indeed, in the Appendix, we prove that, irrespective
of the value of the increment r, the probability of having a velocity increment ∆u > v
cannot exceed twice the probability of having a single-point velocity fluctuation
u > v/2. Loosely expressed, the p.d.f. of velocity increments cannot cross (a suitable
multiple of) the single-point p.d.f.

What, to the best of our knowledge, has never been observed before is the p.d.f.
of transverse increments with such a small separation, namely 1.8η, that is 28 µm, the
pixel size for run F. A remarkable feature, seen on figure 14, is that transverse velocity
increments of about 0.5 urms across a distance of 1.8η are within the statistically
significant range where the probability is > 10−4. We note that, for separations of
9η, Van der Water & Herweijer (1996) reported transverse increments of a few urms

with well-defined probabilities and also observed occasional events with increments
of up to 8 urms. We shall leave the discussion of the meaning and consequences of
such ‘violent events’ to the next section. In order to check for their possibly spurious
character, we have developed a procedure to identify the lines responsible for such
events. For each of the six runs, we associate to each of the 5 000 to 11 000 collected
lines its maximum velocity excursion, defined as the absolute value of the largest
velocity change between adjacent measurement points, the separation being typically
(1.5–1.8) η. We then extract the twenty lines having the largest velocity excursions.
Figure 15 shows the four strongest events from run F. Note that (i) as described in
§4, a small number (less than 1 %) of lines with unacceptably discontinuous profiles
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have been discarded before any processing, (ii) more than 75 % of our violent events
show both a positive and a negative excursion ; so we can be reasonably sure that
these ‘violent events’ are real and are not artifacts produced by the data acquisition
or its processing.

8. Concluding remarks
We have applied relief to non-intrusive probing of a turbulent jet down to scales of

about 25 µm. The results for the second-order transverse structure function (related
to the longitudinal structure function by (6.3)) are in qualitative and quantitative
agreement with well-documented results for jets of much larger size but comparable
Rλ values. Our exponents for transverse structure functions of order 3 to 8, measured
with an accuracy of a few percent, do not show any significant departures from the
values reported in the literature for longitudinal structure functions.

Using relief we have identified violent transverse events with velocity increments
comparable to urms over distances comparable to the Kolmogorov dissipation scale
η. The identification of lines associated to individual events (cf. end of §7) indicates
that a large fraction of them are not spurious. The associated shapes (cf. figure 15)
are not consistent with a thin vortex sheet, for which the velocity should exhibit some
kind of step. A good candidate is a slender vortex filament with a core diameter of
about η and a circulation of about ηurms. Assuming that the filament has an essentially
straight axis, that the tagging line does not intersect the core and that the orientation
is arbitrary, a simple calculation gives the following contribution to the streamwise
velocity profile (after a suitable translation in y) :

u(y) =
αy + β

y2 + γ2
. (8.1)

(We have here ignored the distorsion in the profile due to the fact that the point
of measurement is at y′ = y + v(y)∆t.) If the axis approaches the tagging line by
an amount O(η), then the maximum transverse velocity increment is O(urms) and the
width of the profile O(η). Note that u(y) decreases as 1/y for large y. The longitudinal
contribution has a different functional form (corresponding to α = 0 in (8.1)) and
decreases as 1/y2, as observed in a calculation similar to ours made by Belin et al.
(1996). It also follows from their calculation that the longitudinal velocity signal will
only show a one-sided excursion unless the filament passes very close to the probe ;
also, the amplitude of the excursion is reduced by the factor v/U which must be
small for the Taylor hypothesis to be valid. Thus transverse probing is much more
favourable for detecting vortex filaments.† We observe that the frequency of events
having velocity increments comparable to urms/2 is consistent with the following
picture : within a volume of the order of the integral scale cubed, there is typically
one such filament with a core diameter O(η), a circulation O(ηurms) and a length
comparable to the integral scale. Alternatively, the filaments could be shorter and
more numerous, as is the case for the ‘worms’ described by Jiménez et al. (1993).
relief, and its companion method phantomm for operating in a liquid (see e.g.

Lempert et al. 1995; Harris et al. 1996), have the advantage that they can measure
transverse velocity increments over distances at least one order of magnitude smaller
than anything that can be done with intrusive techniques. The present limitation of
25 µm should be reducible to approximately 5 µm using higher magnification and

† With a single hot-wire probe, a transverse event with a velocity excursion ∼ urms � U will be
mistaken for a longitudinal event of strength (1/2)u2

rms/U.
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thinner lines. Work is currently under way to increase the brightness of the lines
by interrogating higher vibrational states that have been populated by collisional
energy transfer, and this will further improve the capability of using relief at higher
resolution (Diskin, Lempert & Miles 1996).

Future improvements to relief will also concentrate on higher brightness lines
through the use of new lasers for the interrogation step. This will improve the signal-
to-noise ratio and allow us to operate at lower densities. The system is now being
modified for operation with large-scale facilities. Particular attention is being given
to the development of a portable device with large-scale optics, so lines can be
interrogated at distances up to several metres from the collection optics.

With spatial resolutions extending from the large scale down to more than one
order of magnitude finer than anything achieved previously, relief is opening up new
windows on turbulence, and could reveal structures even smaller than current models
can predict.

Thanks are due to B. Castaing, Y. Gagne, S. A. Orszag, A. Pumir, Z. S. She,
P. Tabeling and V. Yakhot for helpful comments. This work was supported by the
National Science Foundation (grant CTS92-12457), the Direction des Recherche et
Moyens Techniques (grant 94/2582) and by a NATO Collaborative Research Grant
(grant CRG.920480).

Appendix. A bound for the p.d.f. of increments
Let us denote by p(u) and p(∆u; r) the single-point p.d.f. and the p.d.f. of ve-

locity increments ∆u over a distance r, respectively. We assume that the velocity is
homogeneous and we claim that, for any r, we have

Prob {|∆u| > v} ≡
∫
|∆u|>v

p(∆u; r) d∆u

6 2 Prob
{
|u| > 1

2
v
}
≡ 2

∫
|u|>v/2

p(u) du. (A 1)

Indeed, writing ∆u = u(y + r) − u(y), we observe that |∆u| > v requires that at least
one of the two terms u(y + r) or u(y) be larger than v/2. Hence,

Prob {|∆u| > v} 6 Prob
{
|u(y)| > 1

2
v or |u(y + r)| > 1

2
v
}

6 Prob
{
|u(y)| > 1

2
v
}

+ Prob
{
|u(y + r)| > 1

2
v
}
. (A 2)

By the assumed homogeneity, the two terms on the right-hand side of (A 2) are equal.
This proves (A 1). Now, in the case of p.d.f.s p(x) with an exponential or stretched
exponential tail, the cumulated probability Prob {|z| > x} and p(x) differ only by
algebraic prefactors for large values of the argument x. It follows from this and (A 1)
that, for example, if p(u) is Gaussian, then p(∆u; r) cannot be a stretched exponential
with an exponent less than 2 for arbitrarily large values of the argument ∆u.
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Jiménez, J., Wray, A. A., Saffman, P. G. & Rogallo, R. S. 1993 The structure of intense vorticity
in isotropic turbulence. J. Fluid Mech. 255, 65–90.

Kahalerras, H., Malecot, Y. & Gagne, Y. 1996 Transverse structure functions in three-dimensional
turbulence. In Advances in Turbulence VI (ed. S. Gavrilakis, L. Machiels & P. Monkewitz),
pp. 235–238. Kluwer.

Kolmogorov, A. N. 1941 Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk
SSSR 32, 16–18.

Landau, L. D. & Lifschitz, E. M. 1987 Fluid Mechanics, 2nd edn. Pergamon.

Lempert, W. R., Magee, K. Ronney, P., Gee, K. R. & Haugland, R. P. 1995 Flow tagging
velocimetry in incompressible flow using photo-activated nonintrusive tracking of molecular
motion (PHANTOMM). Exps. Fluids 18, 249–257.

Miles, R. B., Lempert, W. & Zhang, B. 1991. Turbulent structure measurements by RELIEF flow
tagging. Fluid Dyn. Res. 8, 9–17.

Miles, R. B., Zhou, D., Zhang, B., Lempert, W. R. & She, Z.-S. 1993 Fundamental turbulence
measurements by RELIEF flow tagging. AIAA J. 31, 447–452.

Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. 2. MIT Press.

Saddoughi, S. G. & Veeravalli, S. V. 1994 Local isotropy in turbulent boundary layers at high
Reynolds numbers. J. Fluid Mech. 268, 333–372.

Sreenivasan, K. R. 1995. On the universality of the Kolmogorov constant. Phys. Fluids 7, 2778–2784.

Van der Water, W. & Herweijer, J. A. 1996 High-order structure function of turbulence. J. Fluid
Mech. (submitted).

Vincent, A. & Meneguzzi, M. 1991. The spatial structure and statistical properties of homogeneous
turbulence. J. Fluid Mech. 225, 1–25.
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